

Name

Class



www.MathsTeacherHub.com

# Solving equations

(9 – 1) Topic booklet

## Higher

These questions have been collated from previous years GCSE Mathematics papers.

**You must have:** Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser.

Total Marks

### Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
  - *there may be more space than you need.*
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must **show all your working out**.
- If the question is a **1H** question you are not allowed to use a calculator.
- If the question is a **2H** or a **3H** question, you may use a calculator to help you answer.

### Information

- The marks for **each** question are shown in brackets
  - *use this as a guide as to how much time to spend on each question.*

### Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

**Answer ALL questions**  
**Write your answers in the space provided.**  
**You must write down all the stages in your working.**

1 Solve  $5x - 6 = 3(x - 1)$



$x = \dots$

November 2017 – Paper 2H

**(Total for Question 1 is 3 marks)**

4 Solve  $5x - 14 = 52 - x$



$x = \dots$

November 2023 – Paper 2H

**(Total for Question 4 is 3 marks)**

7 Solve  $\frac{5-x}{2} = 2x - 7$



$x = \dots$

8 Solve  $x^2 = 5x + 24$

November 2021 – Paper 1H

**(Total for Question 8 is 3 marks)**

8 Steve is asked to solve the equation  $5(x + 2) = 47$



Here is his working.

$$\begin{aligned}5(x + 2) &= 47 \\5x + 2 &= 47 \\5x &= 45 \\x &= 9\end{aligned}$$

Steve's answer is wrong.

(a) What mistake did he make?

(1)

Liz is asked to solve the equation  $3x^2 + 8 = 83$

Here is her working.

$$\begin{aligned}3x^2 + 8 &= 83 \\3x^2 &= 75 \\x^2 &= 25 \\x &= 5\end{aligned}$$

(b) Explain what is wrong with Liz's answer.

(1)

Specimen 2 – Paper 2H

**(Total for Question 8 is 2 marks)**

9 Solve  $5x^2 - 4x - 3 = 0$   
Give your solutions correct to 3 significant figures.



.....  
(3)

November 2018 – Paper 3H

**(Total for Question 9 is 3 marks)**

10 Solve  $\frac{9+x}{7} = 11-x$



$x =$  .....  
(3)

November 2019 – Paper 3H

**(Total for Question 10 is 4 marks)**

**11** Solve  $x^2 - 5x + 3 = 0$

Give your solutions correct to 3 significant figures.



Sample 1 – Paper 3H

**(Total for Question 11 is 3 marks)**

**16** Solve  $(4x - 3)(x + 5) < 0$



June 2024 – Paper 2H

**(Total for Question 16 is 2 marks)**

**16** Solve  $(x - 2)^2 = 3$

Give your solutions correct to 3 significant figures.



---

November 2017 – Paper 2H

**(Total for Question 16 is 2 marks)**

**17** Solve  $x^2 - 6x - 8 = 0$

Write your answer in the form  $a \pm \sqrt{b}$  where  $a$  and  $b$  are integers.

---

Specimen 2 – Paper 1H

**(Total for Question 17 is 3 marks)**

17 Solve  $7x^2 + 8x - 5 = 0$

Give your solutions correct to 3 significant figures.



(3)

Alex has to find the solutions of the quadratic equation  $3k^2 + 10k - 8 = 0$   
Here is his working and answer.

$$(3k - 2)(k + 4) = 0$$

$$k = 2 \text{ or } k = -4$$

(c) What mistake has Alex made?

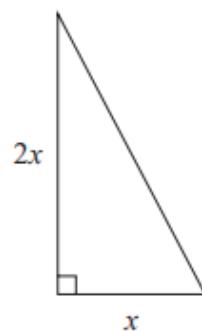
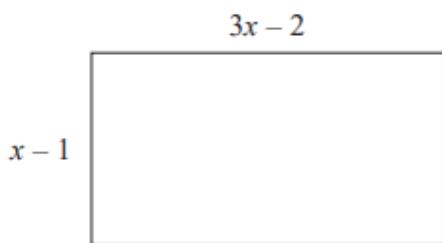
(1)

19 Solve  $6x^2 + 5x - 6 = 0$



November 2022 – Paper 2H

**(Total for Question 19 is 3 marks)**



19 Solve  $2x^2 + 3x - 2 > 0$



June 2017 – Paper 3H

**(Total for Question 19 is 3 marks)**

23 Here is a rectangle and a right-angled triangle.



All measurements are in centimetres.

The area of the rectangle is greater than the area of the triangle.

Find the set of possible values of  $x$ .

23 Given that  $\frac{2x^2 + y^2}{4x^2 - y^2} = \frac{43}{11}$  where  $x > 0$  and  $y > 0$



find, in its simplest form, the ratio  $x:y$